Библиотека приключений и научной фантастики
Действие романа развертывается на историческом фоне событий предреволюционных лет на Украине и гражданской войны в Крыму. Но он не является документальной исторической хроникой. Классовая борьба на Украине и героические битвы за власть Советов в Крыму показаны так, как их видел и понимал мальчик, а потом подросток Юра, подчас еще по-детски наивно. В те годы немало таких мальчиков и девочек из семей трудовой интеллигенции, пылких, честных сердцем, отважных, приходили в революцию, целиком отдавали себя служению большевистской правде, совершали героические поступки.
Герой романа Юра Сагайдак, несмотря на то, что он живет в маленьком курортном городке Судаке, вдали от центров революции и контрреволюции на юге России, оказался свидетелем и участником многих грозных событий.
Скачать.
Николай Владимирович Томан - Воскрешение из мертвых (БПНФ) скачать fb2
Библиотека приключений и научной фантастики
Четыре остросюжетные повести, объединенные общей атеистической темой. Молодые рабочие, ученые, оперативные работники уголовного розыска — герои повестей — разоблачают авантюристов-церковников и предотвращают готовящееся ими преступление.
Четыре остросюжетные повести, объединенные общей атеистической темой. Молодые рабочие, ученые, оперативные работники уголовного розыска — герои повестей — разоблачают авантюристов-церковников и предотвращают готовящееся ими преступление.
Николай Владимирович Томан (Анисимов-Томан) (27 ноября [10 декабря] 1911, Орел - 6 августа 1974, Москва) - русский советский писатель приключенческого жанра, фантаст.
Родился в 1911 году в городе Орле в семье ремесленника А. Анисимова, воспитывался в семье латышского коммуниста Томана, фамилию которого впоследствии взял. В 1929 году окончил Орловское железнодорожное техническое училище. Работал техником, инженером в железнодорожном депо станции Москва-пассажирская. В 1933-1935 гг. служил в армии. После армии работал литературным сотрудником в редакции газеты «Гудок» и учился заочно в Литературном институте им. А.М. Горького в 1937-1938 гг. В 1939-1940 годах принимал участие во вводе Красной Армии в Западную Белоруссию, в советско-финской и Великой Отечественной войнах. После войны жил в Москве. Умер 6 августа 1974 года и похоронен в Москве.
Скачать.
Композитор Жан Франкфуртер
По-немецки Jean Frankfurter. Но это не настоящее имя. На самом деле его зовут Эрих Лиссман (Erich Liessmann). И он не только композитор, а ещё и весьма талантливый поэт и музыкальный продюсер.
Desperta Ferro!
Альмогавары во время завоевания Майорки, фреска XIV века |
Альмогавары воевали фактически по всей Европе - в Пиренеях, Италии, Византии, Северной Африке, на Балканах.
Верный робот (СССР, 1965 год) смотреть онлайн
Телеспектакль по одноименной пьесе Станислава Лема.
Продолжительность: 01:20:44.
Режиссер: Иван Рассомахин.
Действующие лица и исполнители:
Робот - Сергей Юрский,
Клемпнер - заслуженный артист РСФСР Владислав Стржельчик,
Господин Гордон - заслуженный артист РСФСР Владимир Эренберг,
Госпожа Гордон - народная артистка РСФСР Валентина Кибардина,
Господин Доннель - заслуженный артист РСФСР Рэм Лебедев,
Госпожа Доннель - заслуженная артистка РСФСР Лидия Штыкан,
Тип - Игорь Щепетнов,
Посыльные - Е. Иванов, Д. Линдес.
Продолжительность: 01:20:44.
Режиссер: Иван Рассомахин.
Действующие лица и исполнители:
Робот - Сергей Юрский,
Клемпнер - заслуженный артист РСФСР Владислав Стржельчик,
Господин Гордон - заслуженный артист РСФСР Владимир Эренберг,
Госпожа Гордон - народная артистка РСФСР Валентина Кибардина,
Господин Доннель - заслуженный артист РСФСР Рэм Лебедев,
Госпожа Доннель - заслуженная артистка РСФСР Лидия Штыкан,
Тип - Игорь Щепетнов,
Посыльные - Е. Иванов, Д. Линдес.
Параллельные миры (Канада-Франция, 2012 год) смотреть онлайн
«Параллельные миры» (англ. Upside Down) — фантастическая мелодрама режиссёра Хуана Диего Соланаса. В главных ролях Джим Стёрджесс и Кирстен Данст. Премьера в России состоялась 23 августа 2012 года.
П.Е. Данко, А.Г. Попов, Т.Я. Кожевников - Высшая математика в упражнениях и задачах. (в 2-х частях) скачать djvu
Учебное пособие для студентов втузов.
4-е изд., испр. и доп.— M.: Высш. шк., 1986. ч.1 - 304с.; ч.2 - 416с.
Содержание I части охватывает следующие разделы программы: аналитическую геометрию, основы линейной алгебры, дифференциальное исчисление функций одной и нескольких переменных, интегральное исчисление функций одной независимой переменной, элементы линейного программирования.
Содержание II части охватывает следующие разделы программы: кратные и криволинейные интегралы, ряды, дифференциальные уравнения, теорию вероятностей, теорию функций комплексного переменного, операционное исчисление, методы вычислений, основы вариационного исчисления.
В каждом параграфе приводятся необходимые теоретические сведения. Типовые задачи даются с подробными решениями. Имеется большое количество задач для самостоятельной работы.
(Примечание: Современное, 6-е изд.,2006-2007гг., как я понимаю, стереотипное - те же 304 и 416стр.)
Часть 1.
ОГЛАВЛЕНИЕ
Предисловие к четвертому изданию 5
Из предисловий к первому, второму и третьему изданиям 5
Глава I. Аналитическая геометрия на плоскости
§ 1. Прямоугольные и полярные координаты 6
§ 2. Прямая. 15
§ 3. Кривые второго порядка 25
§ 4. Преобразование координат и упрощение уравнений кривых второго порядка 32
§ 5. Определители второго и третьего порядков и системы линейных уравнений с двумя и тремя неизвестными 39
Глава II. Элементы векторной алгебры
§ 1. Прямоугольные координаты в пространстве 44
§ 2. Векторы и простейшие действия над ними. 45
§ 3. Скалярное и векторное произведения. Смешанное произведение . 48
Глава III. Аналитическая геометрия в пространстве
§ 1. Плоскость и прямая . 53
§ 2. Поверхности второго порядка. 63
Глава IV. Определители и матрицы
§ 1. Понятие об определителе n-го порядка. 70
§ 2. Линейные преобразования и матрицы 74
§ 3. Приведение к каноническому виду общих уравнений кривых и поверхностей второго порядка 81
§ 4. Ранг матрицы. Эквивалентные матрицы 86
§ 5. Исследование системы т линейных уравнений с n неизвестными . 88
§ 6. Решение системы линейных уравнений методом Гаусса 91
§ 7. Применение метода Жордана — Гаусса к решению систем линейных уравнений 94
Глава V. Основы линейной алгебры
§ 1. Линейные пространства 103
§ 2. Преобразование координат при переходе к новому базису . 109
§ 3. Подпространства 111
§ 4. Линейные преобразования 115
§ 5. Евклидово пространство 124
§ 6. Ортогональный базис и ортогональные преобразования 128
§ 7. Квадратичные формы 131
Глава VI. Введение в анализ
§ 1. Абсолютная и относительная погрешности 136
§ 2. Функция одной независимой переменной 137
§ 3. Построение графиков функций 140
§ 4. Пределы 142
§ 5. Сравнение бесконечно малых 147
§6. Непрерывность функции 149
Глава VII. Дифференциальное исчисление функций одной независимой переменной
§ 1. Производная и дифференциал 151
§ 2. Исследование функций 167
§ 3. Кривизна плоской линии 183
§ 4. Порядок касания плоских кривых 185
§ 5. Вектор-функция скалярного аргумента и ее производная . 185
§ 6. Сопровождающий трехгранник пространственной кривой. Кривизна и кручение 188
Глава VIII. Дифференциальное исчисление функций нескольких независимых переменных
§ 1. Область определения функции. Линии и поверхности уровня 192
§ 2. Производные и дифференциалы функций нескольких переменных . 193
§ 3. Касательная плоскость и нормаль к поверхности 203
§ 4. Экстремум функции двух независимых переменных 204
Глава IX. Неопределенный интеграл
§ 1. Непосредственное интегрирование. Замена переменной и интегрирование по частям 208
§ 2. Интегрирование рациональных дробей 218
§ 3. Интегрирование простейших иррациональных функций 229
§ 4. Интегрирование тригонометрических функций 234
§ 5. Интегрирование разных функций 242
Глава X. Определенный интеграл
§ 1. Вычисление определенного интеграла 243
§ 2. Несобственные интегралы 247
§ 3. Вычисление площади плоской фигуры 251
§ 4. Вычисление длины дуги плоской кривой 254
§ 5. Вычисление объема тела 255
§ 6. Вычисление площади поверхности вращения 257
§ 7. Статические моменты и моменты инерции плоских дуг и фигур . 258
§ 8. Нахождение координат центра тяжести. Теоремы Гульдена . 260
§ 9. Вычисление работы и давления 262
§ 10. Некоторые сведения о гиперболических функциях 266
Глава XI. Элементы линейного программирования
§ 1. Линейные неравенства и область решений системы линейных неравенств 271
§ 2. Основная задача линейного программирования 274
§ 3. Симплекс-метод 276
§ 4. Двойственные задачи 287
§ 5. Транспортная задача 288
Ответы 294
Часть 2.
ОГЛАВЛЕНИЕ
Глава 1. Двойные и тройные интегралы
§ 1. Двойной интеграл в прямоугольных координатах б
§ 2. Замена переменных в двойном интеграле 10
§ 3. Вычисление площади плоской фигуры 14
§ 4. Вычисление объема тела 16
§ 5. Вычисление площади поверхности 17
§ 6. Физические приложения двойного интеграла 20
§ 7. Тройной интеграл 23
§ 8. Приложения тройного интеграла 28
§ 9. Интегралы, зависящие от параметра. Дифференцирование и интегрирование под знаком интеграла . 30
§ 10. Гамма-функция. Бета-функция 35
Глава II. Криволинейные интегралы и интегралы по поверхности
§ 1. Криволинейные интегралы по длине дуги и по координатам . . 42
§ 2. Независимость криволинейного интеграла II рода от контура интегрирования. Нахождение функции по ее полному дифференциалу 47
§ 3. Формула Грина 50
§ 4. Вычисление площади 51
§ 5. Поверхностные интегралы 52
§ 6. Формулы Стокса и Остроградского — Гаусса. Элементы теории поля 56
Глава III. Ряды
§ 1. Числовые ряды 66
§ 2. Функциональные ряды 77
§ 3. Степенные ряды 81
§ 4. Разложение функций в степенные ряды 86
§ 5. Приближенные вычисления значений функций с помощью степенных рядов 91
§ 6. Применение степенных рядов к вычислению пределов и определенных интегралов 95
§ 7. Комплексные числа и ряды с комплексными числами 97
§ 8. Ряд Фурье 106
§ 9. Интеграл Фурье 113
Глава IV. Обыкновенные дифференциальные уравнения
§ 1. Дифференциальные уравнения первого порядка 117
§ 2. Дифференциальные уравнения высших порядков 139
§ 3. Линейные уравнения высших порядков 145
§ 4. Интегрирование дифференциальных уравнений с помощью рядов 161
§ 5. Системы дифференциальных уравнений 166
Глава V. Элементы теории вероятностей
§ 1. Случайное событие, его частота и вероятность. Геометрическая вероятность 176
§ 2. Теоремы сложения и умножения вероятностей. Условная вероятность 179
§ 3. Формула Бернулли. Наивероятнейшее число наступлений события 183
§ 4. Формула полной вероятности. Формула Бейеса 186
§ 5. Случайная величина и закон ее распределения 188
§ 6. Математическое ожидание и дисперсия случайной величины 192
§ 7. Мода и медиана . 195
§ 8. Равномерное распределение 196
§ 9. Биномиальный закон распределения. Закон Пуассона .... 197
§ 10. Показательное (экспоненциальное) распределение. Функция надежности 200
§ 11. Нормальный закон распределения. Функция Лапласа .... 202
§ 12. Моменты, асимметрия и эксцесс случайной величины .... 206
§ 13. Закон больших чисел 210
§ 14. Теорема Муавра—Лапласа 213
§ 15. Системы случайных величин 214
§ 16. Линии регрессии. Корреляция 223
§ 17. Определение характеристик случайных величин на основе опытных данных 228
§ 18. Нахождение законов распределения случайных величин на основе опытных данных 240
Глава VI. Понятие об уравнениях в частных производных
§ 1. Дифференциальные уравнения первого порядка в частных производных 260
§ 2. Типы уравнений второго порядка в частных производных. Приведение к каноническому виду 262
§ 3. Уравнение колебания струны 265
§ 4. Уравнение теплопроводности 272
§ 5. Задача Дирихле для круга 278
Глава VII. Элементы теории функций комплексного переменного
§ 1. Функции комплексного переменного . 282
§ 2. Производная функции комплексного переменного 285
§ 3. Понятие о конформном отображении 287
§ 4. Интеграл от функции комплексного переменного 291
§ 5. Ряды Тейлора и Лорана 295
§ 6. Вычисление вычетов функций. Применение вычетов к вычислению интегралов . 300
Глава VIII. Элементы операционного исчисления
§ 1. Нахождение изображений функций 305
§ 2. Отыскание оригинала по изображению 307
§ 3. Свертка функций. Изображение производных и интеграла от оригинала 310
§ 4. Применение операционного исчисления к решению некоторых дифференциальных и интегральных уравнений 312
§ 5. Общая формула обращения 315
§ 6. Применение операционного исчисления к решению некоторых уравнений математической физики . 316
Глава IX. Методы вычислений
§ 1. Приближенное решение уравнений 321
§ 2. Интерполирование 330
§ 3. Приближенное вычисление определенных интегралов 334
§ 4. Приближенное вычисление кратных интегралов .. . 338
§ 5. Применение метода Монте-Карло к вычислению определенных и кратных интегралов 350
§ 6. Численное интегрирование дифференциальных уравнений . 362
§ 7. Метод Пикара последовательных приближений 368
§ 8. Простейшие способы обработки опытных данных 370
Глава X. Основы вариационного исчисления
§ 1. Понятие о функционале 385
§ 2. Понятие о вариации функционала 386
§ 3. Понятие об экстремуме функционала. Частные случаи интегрируемости уравнения Эйлера 387
§ 4. Функционалы, зависящие от производных высших порядков 393
§ 5. Функционалы, зависящие от двух функций одной независимой переменной 394
§ 6. Функционалы, зависящие от функций двух независимых переменных 395
§ 7. Параметрическая форма вариационных задач 396
§ 8. Понятие о достаточных условиях экстремума функционала 397
Ответы 398
Приложение 409
Скачать.
4-е изд., испр. и доп.— M.: Высш. шк., 1986. ч.1 - 304с.; ч.2 - 416с.
Содержание I части охватывает следующие разделы программы: аналитическую геометрию, основы линейной алгебры, дифференциальное исчисление функций одной и нескольких переменных, интегральное исчисление функций одной независимой переменной, элементы линейного программирования.
Содержание II части охватывает следующие разделы программы: кратные и криволинейные интегралы, ряды, дифференциальные уравнения, теорию вероятностей, теорию функций комплексного переменного, операционное исчисление, методы вычислений, основы вариационного исчисления.
В каждом параграфе приводятся необходимые теоретические сведения. Типовые задачи даются с подробными решениями. Имеется большое количество задач для самостоятельной работы.
(Примечание: Современное, 6-е изд.,2006-2007гг., как я понимаю, стереотипное - те же 304 и 416стр.)
Часть 1.
ОГЛАВЛЕНИЕ
Предисловие к четвертому изданию 5
Из предисловий к первому, второму и третьему изданиям 5
Глава I. Аналитическая геометрия на плоскости
§ 1. Прямоугольные и полярные координаты 6
§ 2. Прямая. 15
§ 3. Кривые второго порядка 25
§ 4. Преобразование координат и упрощение уравнений кривых второго порядка 32
§ 5. Определители второго и третьего порядков и системы линейных уравнений с двумя и тремя неизвестными 39
Глава II. Элементы векторной алгебры
§ 1. Прямоугольные координаты в пространстве 44
§ 2. Векторы и простейшие действия над ними. 45
§ 3. Скалярное и векторное произведения. Смешанное произведение . 48
Глава III. Аналитическая геометрия в пространстве
§ 1. Плоскость и прямая . 53
§ 2. Поверхности второго порядка. 63
Глава IV. Определители и матрицы
§ 1. Понятие об определителе n-го порядка. 70
§ 2. Линейные преобразования и матрицы 74
§ 3. Приведение к каноническому виду общих уравнений кривых и поверхностей второго порядка 81
§ 4. Ранг матрицы. Эквивалентные матрицы 86
§ 5. Исследование системы т линейных уравнений с n неизвестными . 88
§ 6. Решение системы линейных уравнений методом Гаусса 91
§ 7. Применение метода Жордана — Гаусса к решению систем линейных уравнений 94
Глава V. Основы линейной алгебры
§ 1. Линейные пространства 103
§ 2. Преобразование координат при переходе к новому базису . 109
§ 3. Подпространства 111
§ 4. Линейные преобразования 115
§ 5. Евклидово пространство 124
§ 6. Ортогональный базис и ортогональные преобразования 128
§ 7. Квадратичные формы 131
Глава VI. Введение в анализ
§ 1. Абсолютная и относительная погрешности 136
§ 2. Функция одной независимой переменной 137
§ 3. Построение графиков функций 140
§ 4. Пределы 142
§ 5. Сравнение бесконечно малых 147
§6. Непрерывность функции 149
Глава VII. Дифференциальное исчисление функций одной независимой переменной
§ 1. Производная и дифференциал 151
§ 2. Исследование функций 167
§ 3. Кривизна плоской линии 183
§ 4. Порядок касания плоских кривых 185
§ 5. Вектор-функция скалярного аргумента и ее производная . 185
§ 6. Сопровождающий трехгранник пространственной кривой. Кривизна и кручение 188
Глава VIII. Дифференциальное исчисление функций нескольких независимых переменных
§ 1. Область определения функции. Линии и поверхности уровня 192
§ 2. Производные и дифференциалы функций нескольких переменных . 193
§ 3. Касательная плоскость и нормаль к поверхности 203
§ 4. Экстремум функции двух независимых переменных 204
Глава IX. Неопределенный интеграл
§ 1. Непосредственное интегрирование. Замена переменной и интегрирование по частям 208
§ 2. Интегрирование рациональных дробей 218
§ 3. Интегрирование простейших иррациональных функций 229
§ 4. Интегрирование тригонометрических функций 234
§ 5. Интегрирование разных функций 242
Глава X. Определенный интеграл
§ 1. Вычисление определенного интеграла 243
§ 2. Несобственные интегралы 247
§ 3. Вычисление площади плоской фигуры 251
§ 4. Вычисление длины дуги плоской кривой 254
§ 5. Вычисление объема тела 255
§ 6. Вычисление площади поверхности вращения 257
§ 7. Статические моменты и моменты инерции плоских дуг и фигур . 258
§ 8. Нахождение координат центра тяжести. Теоремы Гульдена . 260
§ 9. Вычисление работы и давления 262
§ 10. Некоторые сведения о гиперболических функциях 266
Глава XI. Элементы линейного программирования
§ 1. Линейные неравенства и область решений системы линейных неравенств 271
§ 2. Основная задача линейного программирования 274
§ 3. Симплекс-метод 276
§ 4. Двойственные задачи 287
§ 5. Транспортная задача 288
Ответы 294
Часть 2.
ОГЛАВЛЕНИЕ
Глава 1. Двойные и тройные интегралы
§ 1. Двойной интеграл в прямоугольных координатах б
§ 2. Замена переменных в двойном интеграле 10
§ 3. Вычисление площади плоской фигуры 14
§ 4. Вычисление объема тела 16
§ 5. Вычисление площади поверхности 17
§ 6. Физические приложения двойного интеграла 20
§ 7. Тройной интеграл 23
§ 8. Приложения тройного интеграла 28
§ 9. Интегралы, зависящие от параметра. Дифференцирование и интегрирование под знаком интеграла . 30
§ 10. Гамма-функция. Бета-функция 35
Глава II. Криволинейные интегралы и интегралы по поверхности
§ 1. Криволинейные интегралы по длине дуги и по координатам . . 42
§ 2. Независимость криволинейного интеграла II рода от контура интегрирования. Нахождение функции по ее полному дифференциалу 47
§ 3. Формула Грина 50
§ 4. Вычисление площади 51
§ 5. Поверхностные интегралы 52
§ 6. Формулы Стокса и Остроградского — Гаусса. Элементы теории поля 56
Глава III. Ряды
§ 1. Числовые ряды 66
§ 2. Функциональные ряды 77
§ 3. Степенные ряды 81
§ 4. Разложение функций в степенные ряды 86
§ 5. Приближенные вычисления значений функций с помощью степенных рядов 91
§ 6. Применение степенных рядов к вычислению пределов и определенных интегралов 95
§ 7. Комплексные числа и ряды с комплексными числами 97
§ 8. Ряд Фурье 106
§ 9. Интеграл Фурье 113
Глава IV. Обыкновенные дифференциальные уравнения
§ 1. Дифференциальные уравнения первого порядка 117
§ 2. Дифференциальные уравнения высших порядков 139
§ 3. Линейные уравнения высших порядков 145
§ 4. Интегрирование дифференциальных уравнений с помощью рядов 161
§ 5. Системы дифференциальных уравнений 166
Глава V. Элементы теории вероятностей
§ 1. Случайное событие, его частота и вероятность. Геометрическая вероятность 176
§ 2. Теоремы сложения и умножения вероятностей. Условная вероятность 179
§ 3. Формула Бернулли. Наивероятнейшее число наступлений события 183
§ 4. Формула полной вероятности. Формула Бейеса 186
§ 5. Случайная величина и закон ее распределения 188
§ 6. Математическое ожидание и дисперсия случайной величины 192
§ 7. Мода и медиана . 195
§ 8. Равномерное распределение 196
§ 9. Биномиальный закон распределения. Закон Пуассона .... 197
§ 10. Показательное (экспоненциальное) распределение. Функция надежности 200
§ 11. Нормальный закон распределения. Функция Лапласа .... 202
§ 12. Моменты, асимметрия и эксцесс случайной величины .... 206
§ 13. Закон больших чисел 210
§ 14. Теорема Муавра—Лапласа 213
§ 15. Системы случайных величин 214
§ 16. Линии регрессии. Корреляция 223
§ 17. Определение характеристик случайных величин на основе опытных данных 228
§ 18. Нахождение законов распределения случайных величин на основе опытных данных 240
Глава VI. Понятие об уравнениях в частных производных
§ 1. Дифференциальные уравнения первого порядка в частных производных 260
§ 2. Типы уравнений второго порядка в частных производных. Приведение к каноническому виду 262
§ 3. Уравнение колебания струны 265
§ 4. Уравнение теплопроводности 272
§ 5. Задача Дирихле для круга 278
Глава VII. Элементы теории функций комплексного переменного
§ 1. Функции комплексного переменного . 282
§ 2. Производная функции комплексного переменного 285
§ 3. Понятие о конформном отображении 287
§ 4. Интеграл от функции комплексного переменного 291
§ 5. Ряды Тейлора и Лорана 295
§ 6. Вычисление вычетов функций. Применение вычетов к вычислению интегралов . 300
Глава VIII. Элементы операционного исчисления
§ 1. Нахождение изображений функций 305
§ 2. Отыскание оригинала по изображению 307
§ 3. Свертка функций. Изображение производных и интеграла от оригинала 310
§ 4. Применение операционного исчисления к решению некоторых дифференциальных и интегральных уравнений 312
§ 5. Общая формула обращения 315
§ 6. Применение операционного исчисления к решению некоторых уравнений математической физики . 316
Глава IX. Методы вычислений
§ 1. Приближенное решение уравнений 321
§ 2. Интерполирование 330
§ 3. Приближенное вычисление определенных интегралов 334
§ 4. Приближенное вычисление кратных интегралов .. . 338
§ 5. Применение метода Монте-Карло к вычислению определенных и кратных интегралов 350
§ 6. Численное интегрирование дифференциальных уравнений . 362
§ 7. Метод Пикара последовательных приближений 368
§ 8. Простейшие способы обработки опытных данных 370
Глава X. Основы вариационного исчисления
§ 1. Понятие о функционале 385
§ 2. Понятие о вариации функционала 386
§ 3. Понятие об экстремуме функционала. Частные случаи интегрируемости уравнения Эйлера 387
§ 4. Функционалы, зависящие от производных высших порядков 393
§ 5. Функционалы, зависящие от двух функций одной независимой переменной 394
§ 6. Функционалы, зависящие от функций двух независимых переменных 395
§ 7. Параметрическая форма вариационных задач 396
§ 8. Понятие о достаточных условиях экстремума функционала 397
Ответы 398
Приложение 409
Скачать.
Евгений Брандис - Интервью с Жюлем Верном
Вот уже много лет Жюль Верн не выезжает из Амьена и все реже выходит из дому.
«Я теперь совсем не двигаюсь и стал таким же домоседом, как раньше был легок на подъем. Возраст, недомогание, заботы – все это приковывает меня к дому. Ах, дружище Поль! – жаловался он брату незадолго до своего семидесятилетнего юбилея. – Хорошее было время, когда мы вместе плавали по морям. Оно уже никогда не вернется…»
«Я теперь совсем не двигаюсь и стал таким же домоседом, как раньше был легок на подъем. Возраст, недомогание, заботы – все это приковывает меня к дому. Ах, дружище Поль! – жаловался он брату незадолго до своего семидесятилетнего юбилея. – Хорошее было время, когда мы вместе плавали по морям. Оно уже никогда не вернется…»
Галин Василий - Капитал Российской империи скачать pdf
Василий Галин. Капитал Российской империи. Практика политической экономии.
2015
354 стр.
Развитие стран и народов подчиняется жестким и объективным, не знающим жалости и сострадания законам. Это естественные законы, они заданы природой и неуклонно проявляются во всех областях жизни человека и общества. Можно ли противостоять им или, наоборот, использовать их, но какой ценой и насколько? История становления капитализма в Российской империи в данном случае может послужить весьма наглядным и поучительным примером. Этот пример тем более показателен, поскольку Россия остается непонятой не только иностранцами, но, и что парадоксально, самими русскими. О России написано огромное множество книг и научных трудов, но среди них крайне редко можно встретить те, в которых Россия рассматривается с системной, естественно-научной точки зрения. Но именно этот подход только и может дать объективный взгляд на судьбы истории и общества.
2015
354 стр.
Развитие стран и народов подчиняется жестким и объективным, не знающим жалости и сострадания законам. Это естественные законы, они заданы природой и неуклонно проявляются во всех областях жизни человека и общества. Можно ли противостоять им или, наоборот, использовать их, но какой ценой и насколько? История становления капитализма в Российской империи в данном случае может послужить весьма наглядным и поучительным примером. Этот пример тем более показателен, поскольку Россия остается непонятой не только иностранцами, но, и что парадоксально, самими русскими. О России написано огромное множество книг и научных трудов, но среди них крайне редко можно встретить те, в которых Россия рассматривается с системной, естественно-научной точки зрения. Но именно этот подход только и может дать объективный взгляд на судьбы истории и общества.
Подписаться на:
Сообщения (Atom)